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abstract: Integrating microbial physiology and biomass stoichi-
ometry opens far-reaching possibilities for linking microbial dynam-
ics to ecosystem processes. For example, the growth-rate hypothesis
(GRH) predicts positive correlations among growth rate, RNA con-
tent, and biomass phosphorus (P) content. Such relationships have
been used to infer patterns of microbial activity, resource availability,
and nutrient recycling in ecosystems. However, for microorganisms
it is unclear under which resource conditions the GRH applies. We
developed a model to test whether the response of microbial biomass
stoichiometry to variable resource stoichiometry can be explained
by a trade-off among cellular components that maximizes growth.
The results show mechanistically why the GRH is valid under P
limitation but not under N limitation. We also show why variability
of growth rate–biomass stoichiometry relationships is lower under
P limitation than under N or C limitation. These theoretical results
are supported by experimental data on macromolecular composition
(RNA, DNA, and protein) and biomass stoichiometry from two dif-
ferent bacteria. In addition, compared to a model with strictly ho-
meostatic biomass, the optimization mechanism we suggest results
in increased microbial N and P mineralization during organic-matter
decomposition. Therefore, this mechanism may also have important
implications for our understanding of nutrient cycling in ecosystems.

Keywords: optimization model, mineralization, growth-rate hypoth-
esis, RNA, biomass stoichiometry, microbial physiology.

Introduction

Ecological stoichiometry provides a powerful tool for in-
tegrating microbial physiology and stoichiometry with
ecosystem processes. For example, the growth-rate hy-
pothesis (GRH) predicts that growth rate increases with
phosphorous concentration through changes in RNA con-
tent (Sterner 1995), which has been observed in organisms
from microbes (Makino et al. 2003) to humans (Elser et
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al. 2007). Recent theoretical advances show that the GRH,
coupled with the metabolic theory of ecology, can explain
stoichiometric patterns across organism types (Allen and
Gillooly 2009). The GRH also underlies the experimental
methods used to estimate microbial activity on the basis
of ribosomal RNA (rRNA) content (Leser et al. 1995).
However, these methods and theories should be inter-
preted with care because observations (Flärdh et al. 1992;
Binder and Liu 1998; Elser et al. 2003) show that the GRH
is not universally valid, especially in microorganisms. The
relationship between bacterial biomass stoichiometry and
growth rate can vary within the same species (Chrzanowski
and Kyle 1996; Makino et al. 2003; Chrzanowski and
Grover 2008) and depend on which nutrient is limiting
growth (Sepers 1986). The mechanisms behind this var-
iability are not yet well understood. Moreover, it has been
proposed that a general lack of theory limits progress in
the field of microbial ecology (Prosser et al. 2007). Thus,
developing theory and models is an important step in
elucidating the mechanisms behind the variable stoichi-
ometry of microorganisms and its implications for nutri-
ent cycling in ecosystems.

The response of microbial growth to variation in re-
source stoichiometry has commonly been modeled with
cellular quotas, that is, the Droop model (Droop 1968;
Thingstad 1987). A phytoplankton model by Klausmeier
et al. (2004), also based on quotas, took this approach one
step further by adding mechanistic detail linking the min-
imum quotas to structural composition in terms of re-
source acquisition and growth machinery. More impor-
tantly, this model employed an optimization strategy of
trade-offs between resource acquisition machinery and
growth machinery to control biomass composition. Op-
timality assumptions are attractive because they provide
an ecological (and/or evolutionary) rationale for model
behavior. Whereas optimal-biomass-allocation principles
have been widely used to explain the response of plants
and animals to resource availability (e.g., Kozłowski et al.
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Figure 1: Model structure. a, Model components and fluxes (processes). b, Effect of biomass partitioning on cell processes for a growth-
limiting element. Arrows indicate positive (plus sign), negative (minus sign), or variable (plus-minus) effect. Biomass composition (u, g, and
z) has direct functional effects on growth and uptake and an indirect effect, through biomass element concentration, that affects nutrient
metabolite consumption per unit of biomass growth (nutrient-use efficiency). For clarity, excretion (which is negligible for a limiting element)
and respiration (which is constant) are not shown.

2004; Franklin et al. 2009), the few such studies that have
been conducted for microorganisms are (to our knowl-
edge) restricted to phytoplankton (e.g., Wirtz 2002; Klaus-
meier et al. 2004). For bacteria, proteome studies suggest
trade-offs between growth and nutrient acquisition (e.g.,
Raman et al. 2005). However, the hypothesis that optimal
allocation of cellular machinery explains the response of
growth rate and biomass stoichiometry to resource stoi-
chiometry in heterotrophic microorganisms has yet to be
tested.

Here we take the optimization approach (Klausmeier et
al. 2004) one step further in terms of mechanistic detail
by explicitly modeling the growth process as a function of
internal resource pools and cellular growth and uptake
machinery, each with a fixed elemental composition. We
hypothesize an optimal partitioning of biomass among
growth machinery, uptake machinery, and other structural
biomass. We then evaluate how optimization among these
components affects biomass composition and stoichiom-
etry under variable resource stoichiometry. Specifically, we
show (1) that optimization of biomass composition that
maximizes specific growth rate explains variability in bac-
terial biomass stoichiometry, (2) that resource stoichi-
ometry strongly influences macromolecular composition
(e.g., RNA content) so that the GRH is valid under P
limitation but not under N limitation, and (3) that the
presence of an optimization mechanism increases P and
N recycling under C-limited bacterial growth, compared
to that when biomass is strictly homeostatic.

Theory and Model

Model Structure and the Optimal-Biomass-
Composition Hypotheses

In our model, structural biomass (fig. 1; table 1) is divided
into cellular compartments with specific functions: (1)
baseline biomass, denoted z (DNA, cellular membrane, cell
wall, essential proteins), (2) growth machinery g (ribo-
somes, RNA), and (3) uptake machinery u (transmem-
brane proteins). In addition to structural biomass, we con-
sider internal C, N, and P metabolite pools that are used
for growth and respiration. All processes and variables
(described below; table 2) are defined on a per-biomass
basis, which allows us to not explicitly consider effects of
cell volume or density changes. Unless indicated, biomass
refers to the structural biomass only (excluding the inter-
nal metabolite pools).

For a given resource level (s), the relative partitioning
of biomass among the three cell compartments (uptake
machinery u, growth machinery g, and baseline biomass
z) is adjusted to maximize the specific growth rate G.
Specifically, the optimal cell composition depends on the
balance between growth and uptake capacity and is further
influenced by the elemental (C, N, P) demand for the
construction of the selected biomass composition (fig. 1b).
The fraction of baseline biomass z is, however, assumed
to always be greater than a minimum value zmin to maintain
essential functions other than growth and uptake. Ad-
justments of biomass composition, for example, amount

https://www.jstor.org/action/showImage?doi=10.1086/657684&iName=master.img-000.jpg&w=449&h=187
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Table 1: Composition of cell compartments

Cell compartment Symbol Composition Protein C N P

Baseline biomass z Cell wall, membranes, DNA (15, 17a) 62, NDa 43 14.9, 13.7a 1.0, 1.0a

Uptake machinery ub Protein 100 46 17 0
Growth machinery gb Ribosomal protein (33), RNA (67)c 33 37 15.3 5.87
C in metabolites pC Carbohydrates (50), lipids (50) 0 54.2d 0 0
N in metabolites pN NH4 (50), amino acids (50) 0 23 47.4 0
P in metabolites pP NaPO4 (50), NaPO3 (50) 0 0 0 28

Note: All values are in percent mass. Unless indicated, C, N, and P percentages in macromolecules and cell compartments are taken

from Sterner and Elser (2002).
a Estimated from data for Pectobacterium carotovorum and Escherichia coli, respectively. ND p not determined.
b Mathematically, u and g are the uptake and growth fractions, respectively, of the nonbaseline biomass ( ).1 � z
c Assuming that 85% of RNA is in ribosomes and that ribosome RNA / protein p 1.8 for prokaryotes (Sterner and Elser 2002).
d From Vrede et al. (2004).

of RNA, have been shown to occur rapidly in response to
environmental changes and in experiments (Kerkhof and
Kemp 1999; Ferenci 2007). Thus, we assume that biomass
composition is in dynamic equilibrium with the environ-
mental conditions, although we also evaluate under which
resource conditions the biomass composition may deviate
from the optimal equilibrium-based predictions.

Cellular Compartments and Stoichiometry

The elemental composition of each cellular compartment
(table 1) is based on values derived from the literature
and original research presented in this study (see below).
Only the elements C, N, and P are explicitly modeled,
whereas all other atoms in biomass and metabolites are
implicit. Specifically, the proportion of element X in bio-
mass (bX, where X denotes C, N, or P) is the product of
the relative amount of each cellular compartment and its
elemental content (Xg, Xu, Xz):

b p z(X ) � (1 � z)(gX � uX )X z g u

p z(X ) � (1 � z)[gX � (1 � g)X ]. (1)z g u

In equation (1), g and u are defined as fractions of the
nonbaseline biomass, so that . Resources areu p 1 � g
taken up from the environment and stored in metabolite
pools that are represented by their C, N, and P contents,
although the actual chemical forms of the resource pools
(metabolites), for example, carbohydrates (C), amino acids
(N, C), and phosphates (P), are variable. Nutrients are
tapped from the metabolite pools (p) for growth of new
biomass (G) and respiration (R) or are excreted (e.g., over-
flow metabolism E). Metabolite pools are assumed to be
in dynamic equilibrium, so that their size depends on the
balance between nutrient uptake (U) and use:

dpX p U � Gb � E p 0,X X Xdt

dpC p U � Gb � E � R p 0, (2)C C Cdt

where X represents N or P.

Cell Processes

Growth. The growth model is based on the synthesizing-
unit (SU) concept, which is based on the microscopic
interactions of growth machinery and different nutrients
(app. A; Kooijman 1998, 2001). In our framework, the SU
concept leads to a growth equation (eq. [3]) in which G
increases with the ratio of metabolite concentration (pX)
to the demand of the same nutrient for biomass growth
(controlled by bX) until G approaches its maximum Gmax:

db 1
p G

dt b
�1

G b b b p pmax C N P C Np G 1 � � � � �Zmax { [ ( )e p p p b bg C N P C N

�1 �1

p p p pC P P N� � � � (3)( ) ( )b b b bC P P N

�1

p p pC N P� � � .( ) ]}b b bC N P

In equation (3), eg is the initial efficiency of the SU, that
is, the growth per metabolite availability at low metabolite
concentration (pX), and Gmax (maximum G) is proportional
to the amount of growth machinery g ( ) and its max-1 � z
imum capacity of biomass synthesis (fG), which is a func-
tion of the maximal translational activity of the ribosomes
(Jackson et al. 2008):

G p f (1 � z)g. (4)max G
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Table 2: Variables and parameters

Symbol Unita Valuesb Description

Variables:
bX g X g B�1 ... Fraction of element X in biomass
EX g X g B�1 h�1 ... Specific rate of excretion of element X
g ... ... Fraction of nonbaseline biomass in growth machinery
G h�1 ... Specific growth rate
pX g X g B�1 ... Metabolite pool of element X
UX g X g B�1 h�1 ... Resource uptake of element X
u ... ... Fraction of nonbaseline biomass in uptake machinery
sX g X g B�1 h�1 ... External resource level of element X
z ... ... Fraction of baseline biomass of total structural biomass

Parameters:
eg ... P.c.: .38; E.c.: 56 Maximum efficiency of the growth machinery
fE ... .01 Excretion rate factor
fG h�1 P.c.: .93; E.c.: 4.2 Maximal synthetic capacity of the growth machinery
plim X g X g B�1 P.c.: .43, .10, .021;

E.c.: .42, .029, .0085
Theoretical maximum metabolite pools of C, N, and P, respectively

r g C g B�1 .02c Baseline maintenance respiration
y ... .5d Growth efficiency: C growth per C used in the growth process
zmin ... P.c.: .56; E.c.: .19 Minimum fraction of baseline biomass of total structural biomass

a B p structural biomass (biomass excluding the nutrient metabolite pools). X p any of the elements C, N, or P.
b P.c. and E.c. p Pectobacterium carotovorum and Escherichia coli, respectively. All parameter values are estimated from our data except as noted below.
c From Tännler et al. (2008).
d From Cajal-Medrano and Maske (1999).

It is commonly assumed that a single nutrient limits
growth (cf. Liebig’s law). In our model, this means that
for the limiting nutrient, the ratio of the metabolite pool
(pX) to biomass concentration (bX) is much smaller than
that for the nonlimiting nutrients. Under these circum-
stances, equation (3) can be approximated by equation
(5), which more clearly illustrates the interaction of Gmax

and each metabolite pool, that is, why small metabolite
pools limit growth whereas Gmax limits growth when me-
tabolite pools are large:

GmaxG p . (5)
1 � (G /e )(b /p )max g X X

In equation [5], the subscript X refers to the most-limiting
nutrient.

Uptake. Similar to the growth dynamics limited by Gmax,
resource uptake (U; eq. [6]) is limited by uptake capacity
(Umax) at a high external resource level (s), whereas it is
limited by s at low s (cf. Brandt et al. 2004; i.e., a Jacob
Monod– or Michaelis-Menten-type functional form):

U smax X XU p . (6)X U � smax X X

Here Umax is a function of uptake machinery (u), as defined
below. Because we consider external resources solely in
terms of their total effects on potential rate of element

uptake, we can neglect underlying details of the uptake
response to s, such as effects of different resource types.
Instead, s represents the total effect of resource level on
uptake, that is, sX is the uptake of element X when the
limitation by Umax is removed and U is completely resource
limited. Uptake of a nonlimiting element is approximated
by in our simulations.U p Umax

Excretion and Respiration. To avoid having any element
reach an unrealistic or deleterious concentration, there is
an upper limit to the size of each internal nutrient pool
(p; Russell and Cook 1995). If p approaches its upper limit
(plim), then nutrients are excreted or rejected (for P and
N) or respired (for C, overflow respiration) according to

f pE XE p (7)X p � plim X X

(fig. B1). In equation (7), fE controls how quickly E in-
creases with p, and it is assumed to be low ( ) sof p 0.01E

that E is minimal below .p r p lim

Anabolic respiration associated with the construction of
biomass (RG) is proportional to growth (G); that is,

, where y is the growth efficiency (y pR p [1/(y � 1)]GG

biomass C growth / total C used in the growth process).
Although y may be variable among species and for dif-
ferent environmental conditions, differences in y have only
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quantitative effects under C limitation but no qualitative
effects on our results. Thus, for simplicity, we assume a
growth efficiency of (Cajal-Medrano and Maskey p 0.5
1999). Specific maintenance respiration (Rm) is assumed
to be constant for each species (Pirt 1982) but varies
among species. A linear relationship between maximum
G and specific maintenance rate (Rm) has been observed
across species (van Bodegom 2007); this can be explained
by the energetic costs of protein synthesis machinery (here
g) increasing with its translation speed (here fG; Dethlefsen
and Schmidt 2007). In our model, this relationship cor-
responds to Rm proportional to fG, where (Tänn-r p 0.02
ler et al. 2008) is the baseline respiration:

R p rf . (8)m G

Balancing Capacities for Nutrient Uptake and Use. Uptake
capacity and growth capacity are linked to their respective
proportions (g and u) of the nonbaseline biomass (1 �
) through a trade-off ( ), so that both capacitiesz u p 1 � g

cannot be maximized simultaneously. Furthermore, given
the benefits of the ability to utilize and buffer variations
in resource supply (e.g., Thomas and O’Shea 2005), max-
imum uptake capacity should be higher than maximum
growth capacity. Specifically, we assume that a reference
uptake capacity, given by , suffices to matchu p u p 0.50

maximum growth capacity (Umax at equalsg p u p 0.5
GmaxbX at ) for each nutrient, which leads to equationg p 1
(9). However, as long as the maximum uptake capacity is
not smaller than maximum growth capacity, our results
are not sensitive to this assumption.

f bG XU p u (1 � z),max X u 0

f b (1 � z ) u (1 � z)G C minU p � rf , (9)max C G[ ]y (1 � z )umin 0

for . In equation (9), bX (eq. [1]) is evaluatedX p N or P
at and .g p u p 0.5 z p z0 min

Model Evaluation

Solving for Optimal Biomass Composition. To evaluate the
model, G (eq. [3]) was maximized with respect to biomass
composition (g and z) for each substrate level (s), under
the constraint . We numerically solved for s toz 1 zmin

obtain optimal g and z as a function of G. In each case,
single-element limitation was modeled; that is, only one
resource element at a time affected G, while the effects of
the other resources were fixed by setting their uptake rate

(see “Uptake”). In addition, we evaluated theU p Umax

robustness of the optimal biomass composition in terms

of the probability for suboptimal values of g and z. For
example, because of rapid fluctuations in resource level,
cells may not always be in dynamic equilibrium with the
environment and may therefore deviate from the modeled
optimal composition, which would lead to variation
around the optimal G-to-g and G-to-z relationships. The
range of this variability should be larger the less sensitive
G is to deviation of g and z from their respective optima.
Thus, as a measure of potential variability in g and z, we
calculated how far each parameter can be from the optima
without reducing G by more than 5%.

Model Testing and Evaluation. To test the most central
assumption in the model, optimal biomass partitioning,
we compared model predictions and data for concentra-
tions of macromolecules specific to two of the three bio-
mass compartments. The data came from a chemostat
experiment using Escherichia coli (Makino et al. 2003) and
a batch culture experiment using Pectobacterium caroto-
vorum (app. C; Keiblinger et al. 2010). RNA was used as
an index of growth machinery (as 85% of cellular RNA
is rRNA; table 1), and DNA was used as an index of
baseline biomass. To minimize the effect of changes in
nonstructural components, that is, metabolite pools, we
analyzed RNA and DNA relative to protein content (for
P. carotovorum), which is not affected by metabolite pools.
When protein data were not available (for E. coli), they
were replaced by total N content. The model was fit-
ted (see method below) to measured RNA : protein,
DNA : protein, and P metabolite pool : protein for P. caro-
tovorum and to RNA : N and DNA : N for E. coli. For the
testing of metabolite pool dynamics we chose P, because
we can more easily separate metabolites and structural
components—that is, amounts in RNA (fixed proportion
of growth machinery) and in baseline biomass (constant
under P limitation; table 1)—for P than for C and N,
which occur in all cell compartments and in more than
one metabolite pool. For P. carotovorum, the limiting nu-
trient was identified for each treatment on the basis of
measured dynamics of metabolite pools and storage (poly-
phosphate and carbohydrates) in response to growth rate
(app. C). For E. coli, we relied on limitations identified in
the original study (Makino et al. 2003). Finally, we eval-
uated the consequences of our optimization hypothesis for
nutrient recycling during decomposition by simulating the
effect of declining C availability, which is ubiquitous dur-
ing organic-matter decomposition.

Parameterization. Although the elemental composition of
the macromolecules and the macromolecular composition
of the cellular compartments are constrained (Sterner and
Elser 2002), some components vary among species or are
difficult to estimate accurately from literature data. Thus,
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we estimated species-specific values for minimum baseline
biomass (zmin) and its N, protein, and DNA contents from
data for each species. For the process-related parameters,
we estimated species-specific values for the maximum ca-
pacity (fG) and efficiency (eg) of the growth machinery and
the maximum metabolite pool sizes (plim X). Best-fit pa-
rameters (maximum likelihood of yielding the measured
data) were estimated via Markov chain Monte Carlo (e.g.,
Gelman et al. 2004), which has the advantage, compared
to standard optimum-seeking methods, of minimizing the
risk of selecting a local but not global optimum for the
parameter values. For all calculations we used MathCad
(ver. 13) software (code available in a zip file).

Results: Model Performance and Behavior

Modeled and Measured Relationships between Growth
Rate and Macromolecular Biomass Composition

In order to evaluate the presence of the hypothesized op-
timization mechanism, we compared measurements with
model predictions (optimal and potential suboptimal
ranges of variability) of covariation of biomass composi-
tion and specific growth rate induced by variation in re-
source level and resource C : N : P stoichiometry. Specif-
ically, we tested for RNA : protein, DNA : protein, and P
metabolite pools : protein ratios under N and P limitation
for Pectobacterium carotovorum. For Escherichia coli, pro-
tein data were not available, so we tested for RNA : N and
DNA : N under C and P limitation.

For P. carotovorum, the modeled biomass composition
versus growth rate G differed significantly between N-lim-
ited growth and P-limited growth (fig. 2). Under P lim-
itation, modeled RNA : protein increased linearly with G,
in accordance with the growth-rate hypothesis (GRH).
However, under N limitation, the modeled RNA : protein
relationship with G was nonlinear and clearly defied the
GRH. Also, the modeled DNA : protein ratio differed be-
tween P and N limitation. Whereas this ratio did not vary
with G under P limitation, it increased with declining G
under N limitation, resulting from a relative increase in
baseline biomass (z, which includes DNA) and a relative
reduction of both growth and uptake machinery. These
model predictions of optimal biomass composition were
consistent with the observed trends in RNA : DNA : pro-
tein ratios versus G, capturing the differences in these
relationships between P and N limitation (fig. 2). In ad-
dition, most of the observed variability of the response
variables was within the modeled range of potential var-
iability (fig. 2, thin lines), although under P limitation some
observed variability in DNA : protein could not be readily
explained by the model. For E. coli, the model predicted
linearly increasing RNA : N versus G under P limitation
and a similar relationship, with a smaller slope, under C

limitation over the range of observed G. For optimal
DNA : N, no effect of G or difference between C and P
limitation was predicted by the model. However, for both
DNA : N and RNA : N the model suggests a higher po-
tential variability under C limitation than under P limi-
tation. These modeled trends for optimal biomass com-
position were again consistent with observations (fig. 2).

The modeled P metabolite pool in P. carotovorum dif-
fered significantly between P-limited and non-P-limited
conditions, resulting in a much lower pool under P lim-
itation than under N limitation (fig. 3). In addition, under
P limitation the P metabolite pool increased strongly with
increasing G, whereas such a monotonic relationship was
not present under N limitation. The model implies that
this difference reflects a general difference between the
metabolite pool dynamics of limiting and nonlimiting nu-
trients. For a limiting nutrient, the metabolite pool (p)
increases with G because p is a dominant control of G (fig.
1b; eq. [5]). In contrast, nonlimiting nutrients can accu-
mulate in metabolite pools without strong effects on G.
Instead, nonlimiting metabolites are passively controlled
by the flux balance of the cell; for example, they are re-
duced through increased use when G increases at constant
uptake capacity. This difference between limiting and non-
limiting conditions was confirmed by the measured trends
in P metabolites in P. carotovorum (fig. 3).

The differences in estimated model parameters (the
model interpretation of the empirical data) between the
two bacterial species imply that E. coli reaches a higher G
than does P. carotovorum because of the higher capacity
(fG) and higher efficiency (eg) of its growth machinery. The
difference in G is further enhanced by E. coli’s lower min-
imum requirement for baseline biomass (zmin). The model
also suggests that the species differed in their maximum
metabolite pools for P and N, although we were not able
to evaluate this using the available empirical data.

In summary, the model predicted trends in the rela-
tionships among biomass G, RNA, DNA, and protein and
how those relationships differed under C, N, and P lim-
itation, in agreement with observations. This result is con-
sistent with an optimization of biomass composition to
maximize specific growth rate in response to resource lev-
els. In addition, the agreement between modeled and mea-
sured dynamics of the metabolite pools was consistent with
the growth and uptake mechanisms proposed in the
model.

Implications for a Microbial Process, Nutrient Recycling

During microbial decomposition of organic matter, re-
source C : N and C : P ratios gradually decline because of
the loss of C through microbial respiration. We evaluated
the effect of our optimization hypothesis on this process
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Figure 2: Relationships between biomass composition ratios and specific growth rate (G) induced by variation in external resource levels
for two species of bacteria. Modeled (lines) and measured (symbols) results for growth under different single-element limitations: N limitation
(dashed lines, circles), P limitation (solid lines, triangles), and C limitation (dash-dotted lines, squares). The optimal state (thick middle line)
and intervals of near-optimal states (95% optimal; upper and lower thin lines) were modeled. The distance between the thin lines represents
the range of near-optimal values. For Pectobacterium carotovorum, and 0.10 for RNA : protein and DNA : protein, respectively,2r p 0.79
under P limitation and 0.43 and 0.63, respectively, under N limitation. For Escherichia coli, and 0.31 for RNA : N and DNA : N,2r p 0.86
respectively, under P limitation, and 0.57 and 0.086, respectively, under C limitation.

for a bacterium (P. carotovorum) by model simulation of
declining resource C level at two levels of fixed resource
N availability and constant resource P (fig. 4).

Compared to the case when biomass was homeostatic,
optimization of biomass composition led to a small in-
crease in growth rate and a slight change in biomass
C : N but a significant change in biomass N : P when C
limitation set in. More importantly, modeled recycling
(mineralization) of both N and P was increased because
of the optimization. This is explained by the shift from a
low proportion of uptake machinery (u) under N limi-
tation to higher u under C limitation (mechanism ex-
plained below). This shift increases uptake and therefore
also excretion of excess nonlimiting elements, that is, P

and N. If the resource N level is reduced, the resource
C : N ratio where the shift to C limitation occurs is in-
creased. This effect of resource N level is due to the effect
of maintenance respiration that causes a growth-indepen-
dent C-use term, which means that total C use does not
decline in proportion to N use as resource N level declines.

Discussion

Mechanisms Regulating the Contrasting Biomass
Composition among P, N, and C Limitation

In both the model and the empirical studies, growth rate
(G) scaled consistently with RNA and biomass P content

https://www.jstor.org/action/showImage?doi=10.1086/657684&iName=master.img-001.jpg&w=390&h=352
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Figure 3: Relationships between metabolite pool phosphorus : bio-
mass protein ratio and specific growth rate (G) induced by variation
in external resource levels. The growth-limiting elements were ni-
trogen (N) and phosphorus (P; symbols and lines as in fig. 2). The
lower thin solid line for P limitation (near-optimal value) coincides
with the thick solid line (optimal value). Measured P metabolite pools
were calculated from the P budget as , whereP � P � Ptotal RNA z

. Pz non-DNA was the non-DNA P content in base-P p P � Pz DNA z non-DNA

line biomass (z) and was estimated as 0.28% by fitting the y-intercept
of the metabolite pool versus G under P limitation to 0. For P
limitation, one outlier, at , for which the estimated PG p 0.065
metabolite pool was !0 was removed from the analysis. 2r p 0.32
and 0.87 under N and P limitation, respectively.

under P limitation and, at higher growth rates, under C
limitation, but not under N limitation. To understand
these differences, it is important to understand the two
interacting mechanisms through which biomass partition-
ing maximizes growth rate in our model. First, changes
in proportions of growth and uptake machinery (g and u,
respectively) cause a functional trade-off between growth
and uptake capacity. Second, the resultant changes in bio-
mass composition affect the demand for (use of) the lim-
iting element per biomass constructed; that is, a nutrient-
use efficiency (NUE) effect emerges. This effect determines
the rate at which the metabolite pool is depleted for a
given growth rate (fig. 1b). While the functional trade-off
always supports the GRH, the NUE effect does not. The
NUE effect is important at low resource levels, where it
results in biomass patterns that are consistent with the
GRH under P limitation but not under N limitation.
Therefore, resource level ultimately determines which
mechanism controls the relationship between biomass
stoichiometry and growth.

The optimization of the functional trade-off acts equally
for all limiting elements, by favoring growth machinery at

the expense of uptake machinery as resource level in-
creases. At a high resource level, this optimization of func-
tional capacity is the dominant mechanism controlling
biomass composition. Under these conditions, the positive
relationships between RNA, G, and biomass P may emerge
independently of which element is limiting, consistent with
the GRH. Baseline biomass z will always be at its minimum
value because it does not contribute to either uptake or
growth capacity.

At declining resource levels, the effects of uptake and
growth capacity decline because uptake is controlled by
resource level rather than uptake capacity (fig. 1b; eq. [6]).
As a consequence, the relative importance of the NUE
effect increases and biomass is allocated toward the com-
partment with the lowest concentration of the limiting
nutrient. For example, under P limitation, because uptake
machinery is lowest and growth machinery highest in P,
the NUE effect reinforces the functional trade-off that re-
duces growth machinery as available P decreases. In con-
trast, under N limitation, the NUE effect opposes the func-
tional effect because the growth machinery has an N
concentration lower than that of the uptake machinery,
leading to increasing allocation to the growth machinery
(RNA) even though growth rate is declining. However, at
very low resource levels, increased baseline biomass z will
be favored because of its even lower N concentration,
despite the fact that this reduces both uptake and growth
capacity. Together, these responses provide a mechanistic
explanation for couplings between growth and biomass
stoichiometry that lead to the non-GRH-compliant rela-
tionships observed under N limitation (fig. 2).

Under C limitation, there is an NUE effect analogous
to but smaller than that under N limitation (because
growth machinery is lower in C than is uptake machinery).
However, under C limitation, maintenance respiration be-
comes an important determinate of biomass C at a low
growth rate, which limits the importance of the NUE effect
and maintains GRH-compliant relationships except at very
low growth rates (fig. 2).

Mechanisms Regulating Potential Suboptimal Variability
in Biomass Composition

The modeled differences in the near-optimal ranges (the
distance between the thin lines in fig. 2) under limitation
by different nutrients suggests that the relationship be-
tween optimized g and the specific growth rate (and there-
fore the RNA-G relationship) is much less constrained and
more prone to variation at low G under C limitation and
under N limitation than under P limitation. For example,
the near-optimal range of RNA : protein under N limi-
tation is ∼10 times that under P limitation at a low growth
rate for Pectobacterium carotovorum (fig. 2). This difference

https://www.jstor.org/action/showImage?doi=10.1086/657684&iName=master.img-002.jpg&w=227&h=187
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Figure 4: Simulated C, N, and P recycling (EC, EN, and EP) and bacterial (Pectobacterium carotovorum) biomass element ratios in response
to external resource C : N ratio. The difference between homeostatic structural biomass (thin lines) and dynamically optimized biomass
partitioning (thick lines) was tested. Resource C : N was varied by reducing C availability from right to left on the X-axis, which caused a
shift from N limitation to C limitation of bacterial growth (P was not limiting). The approximate shifting points are indicated by vertical
dashed lines. a, b, Recycling (E) of C (dash-dotted lines), N (#5; dashed lines), and P (#5; solid lines). c, d, Structural biomass element
ratios for C : N (solid line) and N : P (dashed line). a and c correspond to double the resource N level in b and d.

is due to the interaction of the NUE effect and the func-
tional effect on the optimal biomass allocation. Under P
limitation these mechanisms work together, amplifying the
effect of P use on growth, whereas under N limitation they
oppose each other and therefore tend to cancel out. This
difference leads to a high sensitivity of G to P use and
therefore to variation in biomass composition (g and z)
under P limitation, while under N limitation the corre-
sponding sensitivity of G to biomass composition is low.

Novel Aspects and Implications for
Microbial Biomass Stoichiometry

Our model links physiology directly to biomass compo-
sition and therefore to biomass stoichiometry, employing
optimization of structure composition as the controlling
mechanism. We have shown that the optimization strategy,
rooted in an ecological and evolutionary rationale, pro-
vides a means to understand how microbial biomass stoi-
chiometry and physiology are influenced by changes in
the environment, including resource variation. In addition
to the novel optimization strategy, our model differs from
widely used microbial stoichiometry models (e.g., quota

models: Droop 1968; Thingstad 1987) in its more mech-
anistic representation of the growth process, which de-
scribes gradual shifts between different resource limita-
tions and the explicit interaction of growth machinery and
metabolite pools. Supported by empirical data, we showed
how this interaction leads to a positive concave relation-
ship between G and the metabolite pool for a limiting
nutrient, while the metabolite pool tends to decrease with
G at high G for nonlimiting nutrients (fig. 3). Our model
provides a mechanistic explanation for such relationships,
which also have been observed for different nutrients in
yeast (Boer et al. 2010).

We applied the model to elucidate observed patterns of
covariation among biomass composition, stoichiometry,
and growth, such as the growth-rate hypothesis (GRH),
under different resource stoichiometry. Integration of stoi-
chiometric theory, cellular composition, and physiology
has previously been done on the basis of the GRH (Vrede
et al. 2004) and by incorporating the GRH into the met-
abolic theory of ecology (Allen and Gillooly 2009). How-
ever, while the resulting theory explained patterns across
organism types, it did not explain how individual organ-
isms and populations adapt or acclimate to changes in

https://www.jstor.org/action/showImage?doi=10.1086/657684&iName=master.img-003.jpg&w=399&h=253
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resource level and stoichiometry. By contrast, adaptive
phenotypic plasticity, that is, optimal acclimation of bio-
mass composition, is central in our model. Moreover, mul-
tiple empirical studies show that a theory where ribosome
content always correlates with growth seems insufficient
for dealing with microorganisms, because they often defy
the GRH under non-P limitation (Flärdh et al. 1992;
Binder and Liu 1998; Elser et al. 2003). In the light of our
model, such results are explained by opposing effects of
biomass composition on functional capacities versus nu-
trient-use efficiency, exemplified for P. carotovorum under
N limitation (fig. 2). In addition, at low G under C and
particularly N limitation, our model implies that G is rel-
atively insensitive to variation in cell composition (fig. 2),
suggesting an explanation for the high variability in stoi-
chiometric relationships and RNA observed under these
conditions. Thus, our model offers a mechanistic expla-
nation for observations of variable and high RNA abun-
dance at low G, which has previously been suggested to
be a means of responding quickly to increased resource
levels (Flärdh et al. 1992). Our suggested mechanism may
also have contributed to the decoupling of growth-rate
RNA and biomass P observed in bacteria across a large
number of lakes (Hall et al. 2009).

Although our results are consistent with the limited va-
lidity of the GRH observed under many resource condi-
tions, they do not imply that the GRH is exclusively re-
stricted to P limitation, as suggested by Elser et al. (2003).
We showed that organisms grown under C limitation
(Escherichia coli; fig. 2) can give rise to a relationship be-
tween G and RNA similar to that under P limitation. How-
ever, in contrast to P limitation, under C limitation such
relationships result from a purely functional trade-off be-
tween uptake and growth capacity and are not affected by
nutrient- (here C-) use efficiency (NUE). Although not
shown, the functional trade-off also leads to GRH-com-
pliant relationships under “balanced growth,” that is, when
all nutrients are colimiting, because there is no opposing
effect of NUE, as there is no benefit of increasing the NUE
of any particular nutrient relative to other nutrients. In
agreement with these predictions, the GRH has been ver-
ified for a range of microorganisms under balanced growth
or C limitation (Karpinets et al. 2006).

The relationship between RNA and G varied signifi-
cantly between E. coli and P. carotovorum (fig. 2), sup-
porting empirical results that show that this relationship
is stronger within a species than across species (Kemp et
al. 1993; Kerkhof and Kemp 1999) or communities (Hall
et al. 2009). Furthermore, our model implies that this
relationship is strongly linked to the capacity of the growth
machinery, that is, the maximal synthetic capacity of RNA
(fG; eqq. [3]–[5]), which differs strongly between our in-
vestigated species (table 2). This result explains mecha-

nistically why the synthetic capacity of rRNA is a key factor
controlling differences in the RNA-G relationship across
species with different ecological strategies, as has been pro-
posed (Dethlefsen and Schmidt 2007). These interspecies
differences may also be reinforced by differences in the
proportion of biomass not related to growth or uptake
(z), which we predicted to be much higher for the slower-
growing P. carotovorum than for the fast-growing E. coli.

Implications for Nutrient Cycling

Nutrient recycling (mineralization) is in large part a mi-
crobial process that is strongly affected by the stoichi-
ometry of microbial biomass (Cherif and Loreau 2007;
Manzoni et al. 2008). Because our growth mechanism (eq.
[3]) is based on the synthesizing-unit concept (Kooijman
1998, 2001), it readily models the gradual shift from N to
C limitation of microbial growth that gradually enhances
the N (and P) mineralization : immobilization ratio during
the decomposition process. Our results indicate that the
excretion of N and P during organic-matter decomposi-
tion is increased if biomass is dynamically optimized rel-
ative to excretion when biomass is strictly homeostatic.
Therefore, our model results suggest that part of nutrient
mineralization during organic-matter decomposition is a
by-product of microorganisms adjusting their biomass
composition to maximize growth (fig. 4). Thus, our sug-
gested optimization mechanism may allow us to develop
a better understanding of nutrient mineralization and im-
mobilization dynamics in ecosystems.

Limitations and Possibilities for Additional Evaluation

Our ability to validate all aspects of the model for a wider
range of microorganisms was limited by the availability of
data that included all necessary biomass compartments,
growth rate, and a conclusive identification of the limiting
nutrient. In particular, direct evidence for changes in up-
take capacity would be valuable for additional testing of
the model and the potential effects on nutrient recycling.
However, while the link between growth machinery and
RNA is well established, a measure of uptake machinery
is not readily obtainable from macromolecular composi-
tion. The application of stable-isotope probing and single-
cell techniques to microbial ecology may allow for higher
resolution and more specific estimates of uptake dynamics
in future studies (Wagner 2009).

Although our data support our assumption that the
metabolite pools are in equilibrium with the growth rate
(fig. 3), this may not always be the case, for example, under
rapid variations in resource level. However, if the equilib-
rium assumption (eq. [2]) is relaxed, the model should
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also be valid under nonequilibrium conditions, which
would be an interesting topic for further analysis.

Conclusions

Our analysis suggests that maximization of specific growth
rate G, constrained by a trade-off between growth and
uptake capacity, is a dominant control on bacterial biomass
composition. In addition, the shifts in biomass compo-
sition affect the resource demands for a given growth rate,
that is, nutrient-use efficiency, because the elemental com-
position of each cellular component is unique. These two
mechanisms can be complementary, as under P limitation,
and can strengthen the relationship between growth and
biomass stoichiometry. They can also act antagonistically,
for example, under N limitation. At a low resource level,
where nutrient-use efficiency becomes a more important
control than the functional growth-uptake trade-off, the
nutrient-use efficiency optimization will lead to different
biomass allocation patterns, depending on which nutrient
is limiting. For example, the growth-rate hypothesis
(GRH) is valid under P limitation but breaks down under
N limitation. The elucidation of these specific mechanisms
provides the first clear mechanistic explanation for why
GRH relationships can come uncoupled under certain re-
source stoichiometry conditions. In addition, the model
results suggest that optimization of cellular composition
during decomposition of organic matter indirectly in-
creases N and P mineralization. Such dynamics may play
an important role in nutrient cycling in ecosystems.

The ability of the model to mechanistically predict bac-
terial biomass stoichiometry and the model’s potential
implications for nutrient recycling suggest that its mech-
anisms may be an appropriate starting point for incor-
porating dynamic microbial physiology into ecosystem-
level models. Because our model is rooted in an ecological
and evolutionary rationale, it can be used to mechanis-
tically explain patterns of microbial stoichiometry in an
ecological context. In addition to established empirical pat-
terns of what happens (e.g., biomass P : N ratio increases
with G), the model explains when it happens (e.g., under
C limitation), how it happens (e.g., a growth-uptake trade-
off), and why it happens (ecological optimization).
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APPENDIX A

The Synthesizing Unit (SU) and Growth

An SU is analogous to an enzyme to which substrate mol-
ecules bind to form a product that is then released (Kooij-
man 1998, 2001). In our case, the product is biomass and
the substrates are carbon (C), nitrogen (N), and phos-
phorus (P); all other atoms in biomass and substrate are
implicit. The SU has binding sites for all substrate mol-
ecules, such that all sites must bind substrate before the
product is released. The production rate of the SU depends
on the probabilities per time unit that the substrate mol-
ecules bind (substrate flux) relative to the number of bind-
ing sites. In our model, the relative number of binding
sites among elements in the SU mirrors the content of the
elements in biomass (bX). The substrate flux (binding
probability) is proportional to the metabolite concentra-
tions for each nutrient (pX). This formulation is based on
an SU model simplified for production of a generalized
compound (biomass) limited by three substrates (C, N,
and P; Kooijman 1998).

The above describes the growth properties per unit
growth machinery (corresponding to 1 SU). To incorpo-
rate the effects of variable amounts of growth machinery
(many SUs), we apply basic Michaelis-Menten-type ki-
netics. At low amounts of growth machinery relative to p,
specific growth (G) is limited by Gmax (eq. [4]), which is
proportional to the amount of growth machinery g (1 �
) and its maximum capacity for biomass synthesis (fG),z

which is a function of the maximal translational activity
of the ribosomes (see Jackson et al. 2008). At high amounts
of growth machinery relative to metabolite concentration,
many units of growth machinery compete for little sub-
strate, so that G is not limited by the amount of growth
machinery but by its efficiency (eg), that is, the product
formation of each SU per nutrient flux.
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APPENDIX B

Modeled Growth and Excretion

Figure B1: Modeled microbial growth (solid line) and excretion
(dashed line) as functions of the internal nutrient metabolite pool
(pN). Excretion prevents pN from exceeding the maximum p pN

(dotted vertical line).p lim N

APPENDIX C

Experiment for Pectobacterium carotovorum

Treatments

Pectobacterium carotovorum (Bergey et al. 1923, pp. 374–
375) was cultivated in batch cultures, in three replicates,
in liquid minimal media modified from the one used by
Clark and Maaløe (1967). The media contained 30 mM
MOPS (pH 7.0), 0.1 nM CaCl2 0.1, 3 mM FeSO4, 20 mM
KCl, 2 mM MgCl2, 14 mM Na2SO4, and 51 mM NaCl.
Glucose, NH4Cl, and Na2HPO4 were added as carbon (C),
nitrogen (N), and phosphorus (P) sources, respectively, in
different amounts and ratios, giving a total of 12 com-
binations (treatments) of C, N, and P. Bacterial media were
sterilized by autoclaving at 121�C for 20 min. Glucose was
added to autoclaved media from filter-sterilized (pore size:
0.2 mm) stock solutions. The inoculations on the media
were made from precultures grown for 60 h in the re-
spective minimum media with fixed concentrations of 150
mM C, 12.5 mM N, and 0.25 mM P. The precultures were
then centrifuged; the pellets were washed twice with min-
imal media without C, N, or P sources and then resus-
pended once more in minimal media to inoculate the 12
treatments. Cultivation was performed in 400 mL of media
at 22�C on a rotary shaker at 180 rpm. For determination

of biomass and its elemental composition, each of the 12
treatments was run in 400 mL of either three or four
replicates as described above. For each treatment, the bac-
terial cultures were measured at two growth phases, log-
arithmic (initial fast growth) and stationary (late slow,
strongly resource-limited growth).

Measurements

The bacterial cultures were transferred into centrifuge
flasks and centrifuged for 45 min at 10,845 g. The biomass
pellet was washed twice with 50 mL of 130 mM NaCl,
followed by resuspension in 50 mL of 130 mM NaCl and
centrifugation for 10 min at 10,845 g. The biomass was
dried in a drying oven for determination of dry mass and
C, N, and P content. Aliquots of dried biomass (∼2 mg)
were weighed into tin capsules, and total C and N were
determined with an elemental analyzer (EA 1110, CE In-
struments, Milan, Italy). For analysis of total P in biomass,
approximately 10 mg of dried samples were wet digested
with 1 mL of nitric acid–perchloric acid mixture (4 : 1 ratio
of HNO3 to HClO3; Kolmer et al. 1951, pp. 1090–1091)
in 2-mL glass flasks on a heating plate. For acid digestion,
the temperature was increased stepwise to 250�C and then
maintained until a small residual volume was left in the
glass flask. Samples were cooled to room temperature and
filled to the 2-mL level with milliQ water. Inorganic P in
the digests was quantified photometrically on the basis of
the phosphomolybdate blue reaction (Schinner et al. 1993)
in a microtiter plate format with a microplate reader (BIO-
TEK Instruments). RNA content was measured by fluo-
rometry with the fluorescent stain RiboGreen according
to the methods of Makino and Cotner (2004). The growth
rates were determined by measuring the increase in tur-
bidity. Turbidity was monitored at regular intervals with
a microplate reader with 250-mL aliquots at a wavelength
of 450 nm for bacteria. Optical density (OD) growth ki-
netics was constructed by plotting the OD of suspensions
corrected for noninoculated medium versus time of in-
cubation. At biomass densities higher than , theOD 1 0.6
samples were diluted.

Calculation of Growth Rate and Identification of
Limiting Resource

The bacterial growth rate was determined by using a five-
parameter logistic growth model that was fitted (using the
Levenberg-Marquardt algorithm in the software Sigma-
Plot) to measured OD as a function of time. Specific
growth rate (G) was evaluated for each biomass sampling
point ts as growth in OD divided by OD; that is, G p

at . Observations at extremely low[(dOD/dt)/OD] t p ts
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growth rates not significantly different from 0 were excluded
because of the high uncertainty in the growth-rate estimate.

The change in non–nucleic acid P (P � P �total RNA

) with growth rate be-P ≈ nonstructural, metabolite PDNA

tween the two growth phases was used to detect the lim-
iting resource. According to our theory, P limitation was
indicated by decreased non–nucleic acid P concentration
during the transition from initial (fast) to late (slow)
growth. The results were also confirmed by an analysis of
polyphosphate (indicative of P storage). Absence of P lim-
itation was interpreted as N limitation. Carbon limitation
was excluded because carbohydrate concentration (indi-
cating C storage) increased between the logarithmic and
stationary phases in all treatments.
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Schinner, F., R. Öhlinger, E. Kandeler, and R. Margesin. 1993. Bo-
denbiologische Arbeitsmethoden. 2nd ed. Springer, Berlin.

Sepers, A. B. J. 1986. Effect of variable nutrient supply rates on the
RNA level of a heterotrophic bacterial strain. Current Microbiology
13:333–336.

Sterner, R. W. 1995. Elemental stoichiometry of species in ecosystems.

Pages 240–252 in C. Jones, and J. Lawton, eds. Linking species
and ecosystems. Chapman & Hall, New York.

Sterner, R. W., and J. J. Elser. 2002. Ecological stoichiometry: the
biology of elements from molecules to the biosphere. Princeton
University Press, Princeton, NJ.

Tännler, S., S. Decasper, and U. Sauer. 2008. Maintenance metabolism
and carbon fluxes in Bacillus species. Microbial Cell Factories 7:
19.

Thingstad, F. 1987. Utilization of N, P, and organic C by heterotrophic
bacteria. I. Outline of a chemostat theory with a consistent concept
of “maintenance” metabolism. Marine Ecology Progress Series 35:
99–109.

Thomas, M. R., and E. K. O’Shea. 2005. An intracellular phosphate
buffer filters transient fluctuations in extracellular phosphate levels.
Proceedings of the National Academy of Sciences of the USA 102:
9565–9570.

van Bodegom, P. 2007. Microbial maintenance: a critical review on
its quantification. Microbial Ecology 53:513–523.

Vrede, T., D. R. Dobberfuhl, S. A. L. M. Kooijman, and J. J. Elser.
2004. Fundamental connections among organism C : N : P stoi-
chiometry, macromolecular composition, and growth. Ecology 85:
1217–1229.

Wagner, M. 2009. Single-cell ecophysiology of microbes as revealed
by Raman microspectroscopy or secondary ion mass spectrometry
imaging. Annual Review of Microbiology 63:411–429.

Wirtz, K. W. 2002. A generic model for changes in microbial kinetic
coefficients. Journal of Biotechnology 97:147–162.

Associate Editor: Volker Grimm
Editor: Mark A. McPeek

Transmission electron microscopy image of bacteria (Pectobacterium carotovorum) used in the study. The dark blue centers of the cells
contain the cellular machinery and pools of storage compounds, which both adapt to the external resource availability. Photograph by
Edward K. Hall.
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